Bayesian latent variable models for mixed discrete outcomes.
نویسندگان
چکیده
In studies of complex health conditions, mixtures of discrete outcomes (event time, count, binary, ordered categorical) are commonly collected. For example, studies of skin tumorigenesis record latency time prior to the first tumor, increases in the number of tumors at each week, and the occurrence of internal tumors at the time of death. Motivated by this application, we propose a general underlying Poisson variable framework for mixed discrete outcomes, accommodating dependency through an additive gamma frailty model for the Poisson means. The model has log-linear, complementary log-log, and proportional hazards forms for count, binary and discrete event time outcomes, respectively. Simple closed form expressions can be derived for the marginal expectations, variances, and correlations. Following a Bayesian approach to inference, conditionally-conjugate prior distributions are chosen that facilitate posterior computation via an MCMC algorithm. The methods are illustrated using data from a Tg.AC mouse bioassay study.
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملA Semiparametric Approach to Mixed Outcome Latent Variable Models: Estimating the Association between Cognition and Regional Brain Volumes
Multivariate data that combine binary, categorical, count and continuous outcomes are common in the social and health sciences. Often, mixed outcome variables together are considered to be tapping a particular latent construct. A common research question then focuses on estimation of the relationship between a latent construct and a scientifically important covariate of interest. A motivating e...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملBeta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملUsing multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals
BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biostatistics
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2005